Муниципальное бюджетное общеобразовательное учреждение города Иркутска средняя общеобразовательная школа №80

«Согласовано»

Заместитель директора по воспитательной работе

_О.В. Днепровская

ceressofis 2019

от выправной в

Дополнительная общеразвивающая программа технической направленности «МИР РОБОТОТЕХНИКИ»

Срок реализации – 1 год Возраст обучающихся – 6-18 лет

Разработчики программы: педагоги дополнительного образования Колотыгин Александр Андреевич, Шитиков Степан Сергеевич

Пояснительная записка

Программа «Мир робототехники» направлена на привлечение учащихся к современным технологиям конструирования, программирования и использования роботизированных устройств. Содержание программы направлено на создание условий для развития личности ребенка, развитие мотивации к познанию и творчеству, обеспечение эмоционального благополучия, приобщение к общечеловеческим ценностям и знаниям, интеллектуальное и духовное развитие. Реализация данной программы способствует развитию личностного и профессионального самоопределения учащихся.

В основе содержания данной программы лежит концепция инженерного образования на основе интеллектуальной и творческой деятельности. Базовой составляющей любой инженерной деятельности является проектно-конструкторская деятельность. Конструирование представляет собой процесс разработки конструкции системы (продукта деятельности) с использованием определенным образом связанных стандартных и изобретенных элементов. Данная программа позволяет учащимся познакомиться с основами робототехники через конструирование простейших механизмов-роботов и управление ими с использованием деталей образовательных конструкторов Lego.

Информационные материалы и литература. Программа «Мир робототехники» составлена на основе дополнительной общеразвивающей программы технической направленности «Юный робототехник 2018» педагогов дополнительного образования МБУ ДО г. Иркутска ЦДТТ М.Г. Рейнгольда и Ю.И. Сергеевой с привлечением материалов из следующей литературы:

- 1. Дополнительная общеобразовательная общеразвивающая программа "Детская технологическая школа «RobotX»", авторы: Никотина Л.Л. и Понаморенко Е.А. (зарегистрирована 15.09.2015, утверждена на заседании ГАОУ ДОД «Центр творческого развития и гуманитарного образования для одаренных детей «Поиск»», г. Ставрополь).
- 2. Материалы книги «The LEGO Technic Idea Book: SIMPLE MACHINES», Yoshihito Isogawa, ISBN: 978-1-59327-277-7, 2010.
- 3. Материалы книги «The LEGO Technic Idea Book: WHEELED WONDERS», Yoshihito Isogawa, ISBN:978-1-59327-278-4, 2010.

Направленность программы: техническая.

Актуальность программы. В последнее время в нашей стране уделяется большое внимание развитию робототехники. Роботы в том или ином виде присутствуют практически во всех видах деятельности: в быту, на производстве, в медицине, космосе, военном, спасательном деле и т.д. Все эти быстроразвивающиеся сферы робототехники требуют квалифицированных специалистов в данной области. В связи с этим в настоящее время образовательная робототехника приобретает все большую значимость и актуальность. Благодаря изучению робототехники, техническому творчеству, направленному на проектирование и конструирование роботов, стало возможным дополнительно мотивировать обучающихся на изучение физики, математики, информатики, выбору инженерных специальностей, проектированию карьеры в индустриальном производстве, а также привлечь детей к исследовательской деятельности.

Педагогическая целесообразность программы: Обучение по программе формирует социально-активного, патриотичного, коммуникабельного, вежливого человека в ученике. Команда и коллектив позволяют развить положительные качества, а также оперативно выявить и исправить отрицательные эффекты в поведении. Участие в соревнованиях, широкоформатных встречах технического сообщества региона формируют ученика, понимающего и принимающего этику поведения в коллективе сверстников и в кругу взрослых.

Отличительные особенности программы: Характерным свойством, отличающих данную программу от других, является сбалансированность образовательного и соревнова-

тельного компонентов в подготовке юных робототехников. В программе предусмотрен индивидуальный уровень сложности практической работы, соответствующий индивидуальным способностям ученика. (1 — низкий, 2 — средний, 3 — высокий уровни подготовки). Уровень определяется по результатам входящей и текущей диагностики. Так же отличительной особенностью программы можно назвать активное привлечение материалов книг известного японского изобретателя Ёшихито Исогава, имеющего 46-и летний преподавательский опыт, что позволяет учащимся всесторонне изучить все технические возможности образовательных конструкторов Lego, перенять передовой, международный опыт конструирования.

Адресат программы: преимущественно учащиеся МБОУ г. Иркутска СОШ №80 6 - 18 лет. Образовательные группы до 15 человек и в соревновательные группы по 6 человек.

Срок освоения программы: 1 год обучения, 9 месяцев, 36 недель, 144 часа из расчета 4 часа в неделю и 216 из расчета 6 часов в неделю.

Форма обучения: очная.

Режим занятий: Занятия проходят 2 раза в неделю по 2 учебных часа (продолжительность занятия: 40 минут для 2-4 и 6-7 классов и 30 минут для 1 классов, перерыв 10 минут), либо 3 раза в неделю по 2 учебных часа (преимущественно для учащихся 5-11 классов).

Цель программы: способствовать формированию системы специальных технических знаний, умений и навыков у детей в процессе конструирования механизмов-роботов, а также дальнейшему профессиональному самоопределению.

Задачи программы

Обучающие:

- сформировать интерес к технике и техническим видам деятельности;
- обучить учащихся использованию в речи специальной терминологии;
- обучить навыкам работы с деталями образовательных конструкторов Lego;
- обучить умениям и навыкам в области конструирования и элементарного программирования в компьютерной среде Lego;
- сформировать умения самостоятельно решать конструкторские задачи и изготовления простейших моделей техники.

Развивающие:

- развить творческие способности личности ребенка, изобретательности, пространственного воображения;
- развить умения организации учебного труда;
- развить у обучающихся внимание;
- развить мелкую моторику.

Воспитательные:

- воспитать настойчивость в преодолении трудностей, достижении поставленных задач;
- воспитать у учащихся внимательность, трудолюбие, усидчивость, умение довести начатое дело до конца;
- воспитать аккуратное и качественное выполнение своей работы
- воспитать умение работать в коллективе. Приучение обучающихся к самостоятельности, аккуратному и качественному выполнению своей работы.

Комплекс основных характеристик программы.

Объём программы: 144 часа.

Содержание программы:

- 1. Основы робототехники (16ч)
- 1.1. Знакомство с робототехникой (2ч).
- Теория: разнообразие профессий в сфере инженерных наук, история появления слова робот, техника безопасности, знакомство с наборами LEGO Mindstorms Education
- 1.2. Курс молодого робототехника (10ч)
- <u>Теория:</u> виды деталей LEGO Technics, гибкие и жёсткие соединения, фрикционные и безфрикционные соединения, плоскости вращения, степени свободы, назначение и виды двигателей, знакомство с модулем управления EV3, трение и сцепление, типы привода, повышающие и понижающие зубчатые передачи, центр тяжести, длина и ширина базы шасси,
- <u>Практика 1</u> уровня: построение тележек, гибких сцепок по образцу, конструирование 1- и 2-двигательных тягачей, применение зубчатых передач, поиск оптимальной длины и ширины базы шасси, оптимального количества и типа колёс
- Практика 2 уровня: построение поездов из тележек, роботов-тягачей и скоростных роботов с дополнительным армированием передачи, дистанционное управление роботами
- Практика 3 уровня: доработка базовых моделей для достижения наивыеших результатов по каждому виду соревнования
- 1.3. Сборка базовых моделей LEGO(4ч)
- Теория: обзор современных базовые модели LEGO приёмы работы с электронной инструкцией по сборке, приёмы командной сборки модели
- Практика 1 уровня: сборка простых моделей из базового набора LEGO Mindstorms (EV3Base, Sort3r, NXT), прошивка готового программного обеспечения
- Практика 2 уровня: сборка и программирование простых моделей из базового и ресурсного наборов LEGO Mindstorms (Znap, Gyroboy)
- Практика 3 уровня: сборка и программирование сложных моделей из базового и ресурсного наборов LEGO Mindstorms (EV3Elephant)
- 2. Конструирование роботов (36ч)
- 2.1. Знакомство с соревнованиями «Робосиб» (3ч)
- Теория: история проведения фестиваля «Робосиб», знакомство с регламентами соревнований, объяснение выигрышной тактики по каждому виду соревнований
- 2.2. Разработка робота для дисциплины «Кегельринг» (11ч)
- Теория: история разработки базовой модели робота для дисциплины «Кегельринг», основные требования к роботу, необходимые к использованию датчики
- Практика 1 уровня: самостоятельная разработка модели под основные требования, построение базовой модели по инструкции, испытания модели на дистанционном управлении, прошивка стандартной программой и испытания автономного режима работы
- Практика 2 уровня: построение базовой модели без инструкции, доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований, испытания робота на дистанционном управлении, написание стандартной программы для автономного режима работы
- Практика 3 уровня: доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований для достижения высших результатов на соревнованиях, доработка стандартного алгоритма автономного режима работы для уменьшения времени выполнения задания

- 2.3. Конструирование робота для дисциплины «Робосумо» (11ч)
- Теория: история разработки базовой модели робота для дисциплины «Робосумо», основные требования к роботу, необходимые к использованию датчики
- Практика 1 уровня: самостоятельная разработка модели под основные требования, построение базовой модели по инструкции, испытания модели на дистанционном управлении, прошивка стандартной программой и испытания автономного режима работы
- Практика 2 уровня: построение базовой модели без инструкции, доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований, испытания робота на дистанционном управлении, написание стандартной программы для автономного режима работы
- Практика 3 уровня: доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований для достижения высших результатов на соревнованиях, разработка нескольких тактик для автономного режима работы
- 2.4. Конструирование робота для дисциплины «Чертёжник» (11ч) Теория:
- Практика 1 уровня: самостоятельная разработка модели под основные требования, построение базовой модели по инструкции, испытания модели на дистанционном управлении, прошивка стандартной программой и испытания автономного режима работы
- Практика 2 уровня: построение базовой модели без инструкции, доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований, испытания робота на дистанционном управлении, написание стандартной программы для автономного режима работы
- Практика 3 уровня: доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований для достижения высших результатов на соревнованиях, разработка нескольких тактик для автономного режима работы
- 3. Программирование роботов (36ч)
- 3.1. Знакомство с соревнованиями «Юниор Профи» (3ч)
- Теория: история проведения соревнований Юниор Профи, знакомство с регламентами соревнований, объяснение выигрышной тактики на примерах соревнований прошлых лет Практика 1 уровня: Построение базовой модели робота EV3Base
- Практика 2 уровня: Построение базовой модели робота EV3Base с набором датчиков и манипуляторов для соревнований прошлого года
- Практика 3 уровня: Построение базовой модели робота EV3Base с набором датчиков и манипуляторов для отборочных соревнований этого года
- 3.2. Программирование процедур для шасси (11ч)
- Теория: основы программирования на EV3Basic, базовые процедуры движения (вперёд, назад, повороты), команды и вычисления, погрешности и поправки
- Практика 1 уровня: программирование 4 базовых процедур (вперёд, назад, налево, направо) по градусам, решение задач на движение (патрулирование, движение по квадрату, движение по восьмёрке)
- Практика 2 уровня: программирование 4 базовых процедур (вперёд, назад, налево, направо) по градусам и миллиметрам, решение задач на движение (патрулирование, движение по квадрату, движение по восьмёрке)

Практика 3 уровня: программирование 4 базовых процедур (вперёд, назад, налево, направо) по градусам и миллиметрам, поправка на ширину базы и диаметр колеса, решение задач на движение (патрулирование, движение по квадрату, движение по восьмёрке)

3.3. Программирование процедур для манипуляторов (11ч)

Теория: базовые процедуры управления манипуляторами, программирование ожидания и реакции на события

Практика 1 уровня: программирование базовых процедур управления манипуляторами (подъём рамки, опускание рамки, П-регулятор приближения к стене

Практика 2 уровня: доработка базовой программы управления манипуляторами на защиту от двойного подъёма и двойного опускания рамки

Практика 3 уровня: разработка собственных процедур управления манипуляторами на достижения высших результатов по регламентам этого года

3.4. Решение задач по компетенции «Мобильная робототехника» (11ч)

Теория: обзор заданий по компетенции «Мобильная робототехника» этого и предыдущего годов, стандартные алгоритмы решения задач

Практика 1 уровня: решение задач уровня С1 и С2

Практика 2 уровня: решение задач уровня С2 и С3

Практика 3 уровня: решение задач уровня С3 и С4

- 4. Управление роботами (12ч)
- 4.1. Знакомство с соревнованиями «РобоВесна» (2ч)

Теория: история проведения соревнований «РобоВесна», знакомство с регламентами соревнований, средства дистанционного управления роботами и основные приёмы эффективного дистанционного управления

4.2. Конструирование роботов для дисциплины «Лабиринт» и «Погрузчик» (4ч)

Теория: основные требования к моделям роботов для дисциплин «Лабиринт» и «Погрузчик»

Практика 1 уровня: разработка модели робота для дисциплины «Лабиринт» под основные требования

Практика 2 уровня: разработка модели робота для дисциплины «Погрузчик» под основные требования

Практика 3 уровня: конструирование базовой модели робота для обоих дисциплин, улучшение базовой модели для достижения высших результатов на соревнованиях, конструирование и программирование пульта управления роботом

4.3. Основы управления роботами (6ч)

Теория: правила разработки программы испытаний робота

Практика 1 уровня: испытания модели на дистанционном управлении через LEGO Mind-storms Commander

Практика 2 уровня: испытания модели на дистанционном управлении через EV3 Simple Remote

Практика 3 уровня: испытания модели на дистанционном управлении через собственный пульт-модуль EV3, управление моделью с клавиатуры через EV3Messenger

- 5. Подготовка к соревнованиям (16ч)
- 5.1. Знакомство с соревнованиями «РоботЭкспо» (2ч)

Теория: история проведения соревнований «РоботЭкспо», знакомство с регламентами соревнований, правила особого режима подготовки к соревнованиям, правила отбора в команду

5.2. Командная подготовка к соревнованиям (10ч)

Теория: этика командного игрока и правила взаимодействия внутри команды и вне её Практика 1 уровня: разработка и испытания собственной модели робота для соревнований «Триал», «Кегельринг» в составе команды из 2 учеников

Практика 2 уровня: разработка и испытания собственной модели робота для соревнований «Канат», «Слалом», «Сумо» в составе команды из 3 учеников

Практика 3 уровня: разработка и испытания собственной модели робота для соревнований «Боулинг», «Шорт-трек»

5.3. Отборочные соревнования (4ч)

Практика 1 уровня: участие в отборочных соревнованиях по дисциплинам «Триал», «Кегельринг» с полным соблюдением регламента соревнований «РоботЭкспо»

Практика 2 уровня: участие в отборочных соревнованиях по дисциплинам «Канат», «Слалом», «Сумо» с полным соблюдением регламента соревнований «РоботЭкспо»

Практика 3 уровня: участие в отборочных соревнованиях по дисциплинам «Боулинг», «Шорт-трек» с полным соблюдением регламента соревнований «РоботЭкспо»

- 6. Подготовка творческих проектов (24ч)
- 6.1. Проект в робототехнике. Выбор темы. (4ч)

Теория: Понятие «проект». Специфика создания проектной работы в робототехнике, разбор лучших проектов прошлых лет.

Практика: Демонстрация проекта прошлого года.

6.2. Работа над проектами (10ч)

Теория: правила публичных выступлений, правила написания описательной части проекта и подготовки к защите проекта

Практика 1 уровня: поиск темы творческого проекта, конструирование робота, тренировки устной защиты проекта

Практика 2 уровня: поиск темы творческого проекта, конструирование робота, программирование робота, написание описательной части проекта, тренировка устной защиты проекта Практика 3 уровня: поиск темы творческого проекта, конструирование робота, программирование робота, написание описательной части проекта, тренировка устной защиты проекта, написание сценария демонстрации возможностей робота

6.3. Защита творческих проектов (10ч)

Теория: правила проведения конкурса проектов, режим работы конференции, правила поведения на конференции, правила подготовки к ответам на вопросы жюри

Практика 1 уровня: защита творческого проекта, ответ на вопросы жюри

Практика 2 уровня: защита творческого проекта, демонстрация работы робота, ответы на вопросы жюри

Практика 3 уровня: защита творческого проекта, демонстрация работы робота в процессе защиты, ответы на вопросы жюри

- 7. Завершение учебного года (4ч)
- 7.1. Заключительные соревнования. (3ч)

Теория: история проведения соревнований по робототехнике, регламент соревнований этого года

Практика 1 уровня: выступление на соревнованиях в одной из дисциплин

Практика 2 уровня: выступление на соревнованиях в двух дисциплинах

Практика 3 уровня: выступление на соревнованиях в трёх дисциплинах

7.2. Подведение итогов года (1ч)

Теория: итоги работы в этом учебном году, планы на следующий учебный год

Планируемые результаты:

По окончании учебного года обучающиеся будут знать:

- поле деятельности инженеров, конструкторов, программистов
- основные принципы конструирования из наборов LEGO и NXT
- понятия прочность, ресурс, технологичность
- виды соревнований по робототехнике, их регламенты и места проведения
- основные принципы визуального программирования в среде LEGO Mindstorms EV3 G (NXT)

уметь:

- собирать, разбирать и заменять компоненты конструкций из наборов LEGO и NXT
- определять преимущества и недостатки каждой экспериментальной конструкции относительно поля её применения
- разрабатывать соединения между деталями из конструктора LEGO и деталями, не входящими в него
- создавать программное обеспечение в среде LEGO Mindstorms EV3 G (NXT)

Комплекс организационно-педагогических условий. Учебный план

No	Название разделов,	Количество часов			Форма контроля	
	тем	всего	теория	практика		
1	Основы робототехни-	16	4	12	Тестирование, внутренние	
1.1	Знакомство с робототехникой	2	2	-	соревнования	
1.2	Курс молодого робототехника	10	2	8		
1.3	Сборка базовых моделей LEGO	4	-	4		
2	Конструирование ро- ботов	36	12	24	Тестирование, внутренние соревнования	
2.1	Знакомство с соревно- ваниями «Робосиб»	3	3	-		
2.2	Разработка робота для дисциплины «Кегельринг»	11	3	8		
2.3	Конструирование робота для дисциплины «Робосумо»	11	3	8		

2.4	V avvamaviva apaviva	11	3	8	
2.4	Конструирование ро-	11	3	0	
	бота для дисциплины				
	«Чертёжник»				
3	Программирование	36	12	24	Тестирование, внутренние
	роботов				соревнования
3.1	Знакомство с соревно-	3	3	-	
	ваниями «JuniorSkills»				
3.2	Программирование	11	3	8	
	процедур для шасси				
3.3	Программирование	11	3	8	
	процедур для манипу-				
	ляторов				
3.4	Решение задач по ком-	11	3	8	
	петенции «Мобильная				
	робототехника»				
4	Управление роботами	12	4	8	Тестирование, внутренние
-	v iipuzoioiiio pooorumiii		-	Ü	соревнования
4.1	Знакомство с соревно-	2	2	_	Соредновины
	ваниями «РобоВесна»	_	_		
4.2	Конструирование ро-	4	1	3	
7.2	ботов для дисциплины	т	1	3	
	«Лабиринт» и «По-				
	1 1				
4.3	грузчик»	6	1	5	
4.3	Основы управления	0	1	3	
_	роботами	17	4	10	
5	Подготовка к сорев-	16	4	12	Соревнования
- 1	нованиям				
5.1	Знакомство с соревно-	2	2	-	
	ваниями «РоботЭкспо»		_	_	
5.2	Командная подготовка	10	2	8	
	к соревнованиям				
5.3	Отборочные соревно-	4	-	4	
	вания				
6	Подготовка творче-	24	8	16	Конкурс творческих про-
	ских проектов				ектов
6.1	Проект в робототехни-	4	4	-	
	ке. Выбор темы.				
6.2	Работа над проектами.	10	2	8	
6.3	Защита проектов	10	2	8	
7	Завершение учебного	4	1	3	Соревнования, опрос
	года				
7.1	Заключительные со-	3	-	3	
	ревнования, спарта-				
	киада				
<u></u>			1		

7.2	Подведение итогов го-	1	1	-	
	да				
	Итого:	144	45	99	

Объём программы: 216 часов.

Содержание программы:

- 1. Основы робототехники (16ч)
- 1.1. Знакомство с робототехникой (2ч).

Теория: разнообразие профессий в сфере инженерных наук, история появления слова робот, техника безопасности, знакомство с наборами LEGO Mindstorms Education.

1.2. Курс молодого робототехника (10ч)

<u>Теория:</u> виды деталей LEGO Technics, гибкие и жёсткие соединения, фрикционные и безфрикционные соединения, плоскости вращения, степени свободы, назначение и виды двигателей, знакомство с модулем управления EV3, трение и сцепление, типы привода, повышающие и понижающие зубчатые передачи, центр тяжести, длина и ширина базы шасси, <u>Практика 1</u> уровня: построение тележек, гибких сцепок по образцу, конструирование 1- и 2-двигательных тягачей, применение зубчатых передач, поиск оптимальной длины и ширины базы шасси, оптимального количества и типа колёс

Практика 2 уровня: построение поездов из тележек, роботов-тягачей и скоростных роботов с дополнительным армированием передачи, дистанционное управление роботами Практика 3 уровня: доработка базовых моделей для достижения наивысших результатов по

каждому виду соревнования

1.3. Сборка базовых моделей LEGO(4ч)

Теория: обзор современных базовые модели LEGO приёмы работы с электронной инструкцией по сборке, приёмы командной сборки модели

Практика 1 уровня: сборка простых моделей из базового набора LEGO Mindstorms (EV3Base, Sort3r, NXT), прошивка готового программного обеспечения

Практика 2 уровня: сборка и программирование простых моделей из базового и ресурсного наборов LEGO Mindstorms (Znap, Gyroboy)

Практика 3 уровня: сборка и программирование сложных моделей из базового и ресурсного наборов LEGO Mindstorms (EV3Elephant)

- 2. Конструирование роботов (36ч)
- 2.1. Знакомство с соревнованиями «Робосиб» (3ч)

Теория: история проведения фестиваля «Робосиб», знакомство с регламентами соревнований, объяснение выигрышной тактики по каждому виду соревнований

2.2. Разработка робота для дисциплины «Кегельринг» (11ч)

Теория: история разработки базовой модели робота для дисциплины «Кегельринг», основные требования к роботу, необходимые к использованию датчики

Практика 1 уровня: самостоятельная разработка модели под основные требования, построение базовой модели по инструкции, испытания модели на дистанционном управлении, прошивка стандартной программой и испытания автономного режима работы

Практика 2 уровня: построение базовой модели без инструкции, доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований, испытания робота на ди-

станционном управлении, написание стандартной программы для автономного режима работы

Практика 3 уровня: доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований для достижения высших результатов на соревнованиях, доработка стандартного алгоритма автономного режима работы для уменьшения времени выполнения задания

2.3. Конструирование робота для дисциплины «Робосумо» (11ч)

Теория: история разработки базовой модели робота для дисциплины «Робосумо», основные требования к роботу, необходимые к использованию датчики

Практика 1 уровня: самостоятельная разработка модели под основные требования, построение базовой модели по инструкции, испытания модели на дистанционном управлении, прошивка стандартной программой и испытания автономного режима работы

Практика 2 уровня: построение базовой модели без инструкции, доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований, испытания робота на дистанционном управлении, написание стандартной программы для автономного режима работы

Практика 3 уровня: доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований для достижения высших результатов на соревнованиях, разработка нескольких тактик для автономного режима работы

2.4. Конструирование робота для дисциплины «Чертёжник» (11ч) Теория:

Практика 1 уровня: самостоятельная разработка модели под основные требования, построение базовой модели по инструкции, испытания модели на дистанционном управлении, прошивка стандартной программой и испытания автономного режима работы Практика 2 уровня: построение базовой модели без инструкции, доработка базовой модели

Практика 2 уровня: построение оазовои модели оез инструкции, дораоотка оазовои модели по результатам анализа успехов и неудач прошлых соревнований, испытания робота на дистанционном управлении, написание стандартной программы для автономного режима работы

Практика 3 уровня: доработка базовой модели по результатам анализа успехов и неудач прошлых соревнований для достижения высших результатов на соревнованиях, разработка нескольких тактик для автономного режима работы

- 3. Программирование роботов (36ч)
- 3.1. Знакомство с соревнованиями «Юниор Профи» (3ч)

Теория: история проведения соревнований Юниор Профи, знакомство с регламентами соревнований, объяснение выигрышной тактики на примерах соревнований прошлых лет Практика 1 уровня: Построение базовой модели робота EV3Base

Практика 2 уровня: Построение базовой модели робота EV3Base с набором датчиков и манипуляторов для соревнований прошлого года

Практика 3 уровня: Построение базовой модели робота EV3Base с набором датчиков и манипуляторов для отборочных соревнований этого года

3.2. Программирование процедур для шасси (11ч)

Теория: основы программирования на EV3Basic, базовые процедуры движения (вперёд, назад, повороты), команды и вычисления, погрешности и поправки

Практика 1 уровня: программирование 4 базовых процедур (вперёд, назад, налево, направо) по градусам, решение задач на движение (патрулирование, движение по квадрату, движение по восьмёрке)

Практика 2 уровня: программирование 4 базовых процедур (вперёд, назад, налево, направо) по градусам и миллиметрам, решение задач на движение (патрулирование, движение по квадрату, движение по восьмёрке)

Практика 3 уровня: программирование 4 базовых процедур (вперёд, назад, налево, направо) по градусам и миллиметрам, поправка на ширину базы и диаметр колеса, решение задач на движение (патрулирование, движение по квадрату, движение по восьмёрке)

3.3. Программирование процедур для манипуляторов (11ч)

Теория: базовые процедуры управления манипуляторами, программирование ожидания и реакции на события

Практика 1 уровня: программирование базовых процедур управления манипуляторами (подъём рамки, опускание рамки, П-регулятор приближения к стене

Практика 2 уровня: доработка базовой программы управления манипуляторами на защиту от двойного подъёма и двойного опускания рамки

Практика 3 уровня: разработка собственных процедур управления манипуляторами на достижения высших результатов по регламентам этого года

3.4. Решение задач по компетенции «Мобильная робототехника» (11ч)

Теория: обзор заданий по компетенции «Мобильная робототехника» этого и предыдущего годов, стандартные алгоритмы решения задач

Практика 1 уровня: решение задач уровня С1 и С2

Практика 2 уровня: решение задач уровня С2 и С3

Практика 3 уровня: решение задач уровня С3 и С4

- 4. Управление роботами (12ч)
- 4.1. Знакомство с соревнованиями «РобоВесна» (2ч)

Теория: история проведения соревнований «РобоВесна», знакомство с регламентами соревнований, средства дистанционного управления роботами и основные приёмы эффективного дистанционного управления

4.2. Конструирование роботов для дисциплины «Лабиринт» и «Погрузчик» (4ч)

Теория: основные требования к моделям роботов для дисциплин «Лабиринт» и «Погрузчик»

Практика 1 уровня: разработка модели робота для дисциплины «Лабиринт» под основные требования

Практика 2 уровня: разработка модели робота для дисциплины «Погрузчик» под основные требования

Практика 3 уровня: конструирование базовой модели робота для обоих дисциплин, улучшение базовой модели для достижения высших результатов на соревнованиях, конструирование и программирование пульта управления роботом

4.3. Основы управления роботами (6ч)

Теория: правила разработки программы испытаний робота

Практика 1 уровня: испытания модели на дистанционном управлении через LEGO Mindstorms Commander

Практика 2 уровня: испытания модели на дистанционном управлении через EV3 Simple Remote

Практика 3 уровня: испытания модели на дистанционном управлении через собственный пульт-модуль EV3, управление моделью с клавиатуры через EV3Messenger

- 5. Подготовка к соревнованиям (16ч)
- 5.1. Знакомство с соревнованиями «РоботЭкспо» (2ч)

Теория: история проведения соревнований «РоботЭкспо», знакомство с регламентами соревнований, правила особого режима подготовки к соревнованиям, правила отбора в команду

5.2. Командная подготовка к соревнованиям (10ч)

Теория: этика командного игрока и правила взаимодействия внутри команды и вне её

Практика 1 уровня: разработка и испытания собственной модели робота для соревнований «Триал», «Кегельринг» в составе команды из 2 учеников

Практика 2 уровня: разработка и испытания собственной модели робота для соревнований «Канат», «Слалом», «Сумо» в составе команды из 3 учеников

Практика 3 уровня: разработка и испытания собственной модели робота для соревнований «Боулинг», «Шорт-трек»

5.3. Отборочные соревнования (4ч)

Практика 1 уровня: участие в отборочных соревнованиях по дисциплинам «Триал», «Кегельринг» с полным соблюдением регламента соревнований «РоботЭкспо»

Практика 2 уровня: участие в отборочных соревнованиях по дисциплинам «Канат», «Слалом», «Сумо» с полным соблюдением регламента соревнований «РоботЭкспо»

Практика 3 уровня: участие в отборочных соревнованиях по дисциплинам «Боулинг», «Шорт-трек» с полным соблюдением регламента соревнований «РоботЭкспо»

- 6. Подготовка творческих проектов (24ч)
- 6.1. Проект в робототехнике. Выбор темы. (4ч)

Теория: Понятие «проект». Специфика создания проектной работы в робототехнике, разбор лучших проектов прошлых лет.

Практика: Демонстрация проекта прошлого года.

6.2. Работа над проектами (10ч)

Теория: правила публичных выступлений, правила написания описательной части проекта и подготовки к защите проекта

Практика 1 уровня: поиск темы творческого проекта, конструирование робота, тренировки устной защиты проекта

Практика 2 уровня: поиск темы творческого проекта, конструирование робота, программирование робота, написание описательной части проекта, тренировка устной защиты проекта

Практика 3 уровня: поиск темы творческого проекта, конструирование робота, программирование робота, написание описательной части проекта, тренировка устной защиты проекта, написание сценария демонстрации возможностей робота

6.3. Защита творческих проектов (10ч)

Теория: правила проведения конкурса проектов, режим работы конференции, правила поведения на конференции, правила подготовки к ответам на вопросы жюри

Практика 1 уровня: защита творческого проекта, ответ на вопросы жюри

Практика 2 уровня: защита творческого проекта, демонстрация работы робота, ответы на вопросы жюри

Практика 3 уровня: защита творческого проекта, демонстрация работы робота в процессе защиты, ответы на вопросы жюри

- 7. Завершение учебного года (4ч)
- 7.1. Заключительные соревнования. (3ч)

Теория: история проведения соревнований по робототехнике, регламент соревнований этого года

Практика 1 уровня: выступление на соревнованиях в одной из дисциплин

Практика 2 уровня: выступление на соревнованиях в двух дисциплинах

Практика 3 уровня: выступление на соревнованиях в трёх дисциплинах

7.2. Подведение итогов года (1ч)

Теория: итоги работы в этом учебном году, планы на следующий учебный год

Планируемые результаты:

По окончании учебного года обучающиеся будут знать:

- поле деятельности инженеров, конструкторов, программистов
- основные принципы конструирования из наборов LEGO и NXT
- понятия прочность, ресурс, технологичность
- виды соревнований по робототехнике, их регламенты и места проведения
- основные принципы визуального программирования в среде LEGO Mindstorms EV3 G (NXT)

уметь:

- собирать, разбирать и заменять компоненты конструкций из наборов LEGO и NXT
- определять преимущества и недостатки каждой экспериментальной конструкции относительно поля её применения
- разрабатывать соединения между деталями из конструктора LEGO и деталями, не входящими в него
- создавать программное обеспечение в среде LEGO Mindstorms EV3 G (NXT)

Комплекс организационно-педагогических условий.

Учебный план

№	Название разделов,	Количество часов		часов	Форма контроля	
	тем	всего	теория	практика		
1	Основы робототехни- ки	24	4	12	Тестирование, внутренние соревнования	
1.1	Знакомство с робототехникой	2	2	-		
1.2	Курс молодого робототехника	16	2	14		
1.3	Сборка базовых моделей LEGO	6	-	6		
2	Конструирование ро- ботов	54	16	38	Тестирование, внутренние соревнования	
2.1	Знакомство с соревно- ваниями «Робосиб»	6	4	2		

2.2	Разработка робота для	16	4	12	
	дисциплины «Кегель-				
	ринг»				
2.3	Конструирование ро-	16	4	12	
	бота для дисциплины				
	«Робосумо»				
2.4	Конструирование ро-	16	4	12	
	бота для дисциплины				
	«Чертёжник»				
3	Программирование	54	16	38	Тестирование, внутренние
	роботов				соревнования
3.1	Знакомство с соревно-	6	4	2	
	ваниями «JuniorSkills»				
3.2	Программирование	16	4	12	
	процедур для шасси				
3.3	Программирование	16	4	12	
	процедур для манипу-				
	ляторов				
3.4	Решение задач по ком-	16	4	12	
	петенции «Мобильная				
	робототехника»				
4	Управление роботами	18	6	12	Тестирование, внутренние
					соревнования
4.1	Знакомство с соревно-	2	2	-	
	ваниями «РобоВесна»				
4.2	Конструирование ро-	6	2	4	
	ботов для дисциплины				
	«Лабиринт» и «По-				
	грузчик»				
4.3	Основы управления	10	2	8	
	роботами				
5	Подготовка к сорев-	24	4	20	Соревнования
	нованиям				
5.1	Знакомство с соревно-	2	2	-	
	ваниями «РоботЭкспо»				
5.2	Командная подготовка	18	2	16	
	к соревнованиям				
5.3	Отборочные соревно-	4	-	4	
L	вания				
6	Подготовка творче-	36	8	28	Конкурс творческих про-
	ских проектов				ектов
6.1	Проект в робототехни-	4	4	-	
	ке. Выбор темы.				
6.2	Работа над проектами.	16	2	14	

6.3	Защита проектов	16	2	14	
7	Завершение учебного	4	2	2	Соревнования, опрос
	года				
7.1	Заключительные со-	2	-	2	
	ревнования, спарта-				
	киада				
7.2	Подведение итогов го-	2	2	-	
	да				
	Итого:	216	56	160	

Оценочные материалы

Контрольно-диагностические материалы (КДМ): тесты, опросы, регламенты соревнований к входящей диагностики, текущий контроль, промежуточной аттестации представлены в Приложении №1. КДМ общие для всех уровней подготовки учеников. Согласно диагностической методике, качество их выполнения может служить подтверждением текущего уровня подготовки, либо основанием для повышения или понижения уровня подготовки. С изменением уровня подготовки ученик получает соответствующий уровень практической работы на занятиях.

Методическое обеспечение образовательной программы Методы проведения занятий

В ходе реализации данной программы могут быть использованы разнообразные методы обучения: словесный (беседы, блиц-опрос, устное изложение педагога), наглядный, объяснительно-иллюстративный, практический методы (тренировки, соревнования по робототехнике).

Формы проведения занятий, организации деятельности:

Обучение: теоретические занятия и беседы в соответствии с учебным планом; изучение схем и чертежей устройств на базе конструктора LEGO Mindstorms EV3; примеры написания прикладных управляющих и вспомогательных программ для задач автоматического управления; сборка действующих моделей роботов; решение творческих задач, работа по образцу; лекция; тренировка; соревнования и другие.

Стимулирование и мотивация учебно-познавательной деятельности: посещение соревнований по робототехнике. Соревнования дают бесценный опыт самопроверки приобретённых на занятиях знаний, умений и навыков, а также возможность сравнить собственный уровень подготовки с другими детьми. Удачное выступление создаёт ситуацию успеха, а неудачное наглядно демонстрирует те аспекты подготовки, которые необходимо подтянуть в первую очередь. Соревнования не только контролируют, но и мотивируют деятельность ученика. В этом их незаменимая роль.

Воспитание: рассказы о выдающихся изобретателях и инженерах, индивидуальные беседы с учащимися, поощрение наиболее отличившихся в процессе обучения.

Контроль: контрольные задания на различных этапах обучения, соревновательная часть. Контрольные задания включают в себя не только теоретическую часть, но и навыки сборки, полученные в процессе уже пройденного обучения.

Использование группового метода обучения:

Использование групповых форм обучения имеет ряд преимуществ: Позволяет учащимся быть субъектами учебно-воспитательного процесса: ставить перед собой цель, планировать ее достижение, самостоятельно приобретать новые знания, контролировать товарищей и себя, оценивать результаты деятельности своих товарищей и себя.

Максимально развивает индивидуальные способности каждого и различные умения:

- Коммуникативные (вопрос, ответ, возражение, реплика, протест, выступление, диалог, умение критиковать и понимать критику, убеждать, разъяснять, доказывать, оценивать);
 - Познавательные умения (сравнивать, анализировать).

Разнообразие форм позволяет учащимся осваивать новые для них роли: учителя, консультанта, участника групповой работы и готовит их к самоуправлению.

Формируются качества, необходимые для сотрудничества: доброжелательность, понимание ценностей человеческого общения, взаимовыручка

Педагогические технологии:

В ходе реализации данной программы используются следующие педагогические технологии

1. Технологии сотрудничества: реализуют демократизм, равенство, партнерство в субъект-субъектных отношениях педагога и ребенка. Учитель и учащиеся совместно вырабатывают цели, содержание, дают оценки, находясь в состоянии сотрудничества, сотворчества.

Между педагогом и учеником процесс обсуждения концепций будущих конструкций, оценка роботов и решений для их создания друг друга. Совместное творчество. Педагог не просто даёт задачу, но и организует дискуссию по обсуждению способов её решения, выступает модератором.

- 2. Технологии, основанные на коллективном способе обучения. Обучение осуществляется, когда каждый учит каждого, ученики быстро находят ошибки и способы их исправления, а также распределяют задачи для ускорения процесса разработки и исследований
- 3. Технология проблемного обучения организованный преподавателем способ активного взаимодействия субъекта с проблемно-представленным содержанием обучения, в ходе которого он приобщается к объективным противоречиям научного знания и способам их решения. Учится мыслить, творчески усваивать знания.

Данная технология применяется для прививания видения проблем и отсутствия страха при их решении при работе над творческими проектами, которые как правило связанны с какими-либо глобальными мировыми проблемами.

Межпредметные связи:

Необходимо отметить, что образовательная робототехника, основывается на использовании предметов школьной программы. Для решения конкретной задачи, а именно — разработки, проектирования и создания робота необходимо интегрировать в одном процессе когнитивные достижения ряда дисциплин, преподаваемых в учебных заведениях (математика, физика, химия, информатика, технология, и др.). При этом формируется чёткая связь между вышеуказанными дисциплинами возникает понимание смысла обучения формируется умение достигать конкретного результата, и, через участие в роботехнических соревнованиях, возникает понимание конкурентной способности идей и решений. Таким образом, утверждается понимание робототехники как комплекса единого знания.

Условия реализации программы.

1. Учебно-методические:

- Интерактивные комплекты заданий из программного продукта Lego Mindstorms Education EV3;
- Электронные справочники и пособия из программного продукта Lego Mindstorms Education EV3;
- Электронные плакаты из программного продукта Lego Mindstorms Education EV3.

2. Материально – технические:

No॒	Наименование	Количество
1	Столы	12
2	Стулья	12
4	Доска	1
5	Конструкторы LEGO EV3 (Базовые наборы)	6
6	Конструкторы LEGO NXT	6
7	Ноутбуки	8

3. Список литературы

Для педагога:

- 1. Овсяницкая, Л.Ю. Курс программирования робота EV3 в среде Lego Mindstorms EV3 / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. 2-е изд., перераб. и доп. М.: Издательство "Перо", 2016. -300 с.
- 2. Овсяницкая, Л.Ю. Пропорциональное управление роботом Lego Mindstorms EV3 / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. -М.: Издательство "Перо", 2015. -188 с.
- 3. Овсяницкая, Л.Ю. Алгоритмы и программы движения робота Lego Mindstorms EV3 по линии/ Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. -М.: Издательство "Перо", 2015. -168 с.
- 4. Программный продукт Lego Mindstorms Education EV3, книга учителя
- 5. Программный продукт Lego Education WeDo, книга учителя
- 6. Программный продукт Lego Mindstorms Education NXT
- 7. Филиппов С.А. Робототехника для детей и родителей. С-Пб «Наука», 2011г.
- 8. Лучин Р.М. Программирование встроенных систем: от модели к роботу. Спб.: Наука, 2011. 184 с.
- 9. Белиовская Л.Г., Белиовский А.Е. Программируем микрокомпьютер NXT в LabVIEW. М.: ДМК Пресс; 2010 280 с.
- 10. Сайт http://www.prorobot.ru, посвященный лего-роботам (новости, инструкции по сборке, справочная информация)
- 11. https://education.lego.com/ru-ru.

Список литературы для учащихся.

- 1. Вязовов С.М, Калягина О.Ю, Слезин К.А., «Соревновательная робототехника: приемы программирования в среде EV3», М.: Издательство «Перо» 2015 132 с.
- 2. Зайцева Н. Н., Цуканова Е. А., «Конструируем роботов на LEGO MINDSTORMS Education EV3. Человек всему мера?» М.: Лаборатория знаний, 2016. 32 с.

- 3. Овсяницкая Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д., «Алгоритмы и программы движения робота Lego Mindstorms EV3 по линии», М.: Издательство «Перо» 2015—168 с.
- 4. Рыжая Е. И., Удалов В. В., «Конструируем роботов на LEGO MINDSTORMS Education EV3. Крутое пике» М.: Лаборатория знаний, 2017. 92 с.
- 5. Филиппов С.А., «Уроки робототехники. Конструкция. Движение. Управление.», М.: Лаборатория знаний, 2017. 176 с.